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SUMMARY 

The continuum low density hypersonic flow of a chemically 

reacting and radiaLrng gas OVPI a blunl body is analyzed by an 

approximate technique based on a recent alternative formulation of 

the well-known method or integral relations.  Specifically, 

approximations are introduced for thr- streamwise variations of 

several flow properties, while detailed radial profiles, (consistent 

with the stipulated procedure) are sought by numerical analysis 

along normals to the body (essentially normals to streamlines); 

the particular formulation allows careful analysis of the large 

changes in physico-chemical properties ot the gas between body 

and shi k. as are to be encountered at the low Reynolds numbers 

where viscous effects are important over the entire shock layer. 

Detailed derivations or the simplified system c? ordinary differ- 

entia! equations and or the boundary conditions governing the 

problem is presented.  An outline of numerical procedures for 

applications is also given. 

i 
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AN APPROXIMATE ANALYSIS OF THE 

CONTINUUM LOW DENSITY HYPERSONIC FLOW 

OF A CHEMICALLY REACTING AND RADIATING 

GAS OVER A BLUNT NOSED BODY 

By 

Massimo Trella and Roberto Vaglio-Laurin 

I.   INTRODUCTION 

The problem of observables associated with reentry of hyper- 

sonic vehicles has received considerable attention in recent years. 

This problem nas streng physico-chemical as well as fluid mechan- 

ical overtones. Applications require detailed and accurate 

quantitative predictions of flow properties; such level of precision 

can only be obtained by numerical methods.  A large body of related 

literature has recently been set forth; however, most analyses are 

pertinent to high Reynolds number flows where distinct shock, 

inviscid and boundary layer regions can be recognized.  The range 

of applicability of those analyses is limited to altitudes below 

I 
I 
I 



approximately 220 kft. for typical body dimensions (R=l ft), and 

hypersonic reentry conditions. At tha higher altitudes different 

flow regimes are encountered, which involve increasingly complex 

analyses.  In an upward sweep of the trajectory, a continuum 

description of the flow can be applied to study the initial 

vorticity interaction, viscous layer, and incipient merged layer 

regimes while the range of lower Reynolds numbers must be analyzed 

on the basis of either transitional or free molecule flow theory. 

The present study is concerned with the first three (con- 

tinuum) regimes mentioned above.  Even within these limits analysis 

becomes very cumbt'rsame, particularly when effects of chemical 

reactions and radiation are included. Current state of the art 

permits detailed numerical investigation of either strictly 

inviscid flows (Rcf. 2) or strictly boundary layer flows (Ref. 3) 

including coupled chemical reactions and, in preliminary fashion, 

radiation* (Ref. 4).  Low density situations have been studied 

to limited extent and only in connection with flows of ideal 

gases; although related analyses rely heavily on extensive machine 

For missile and lunar vehicle reentry, the effect of self 
absorption can become significant in some part of the shock 
layer (Ref. 4); however, in this preliminary study we assume rhe 
thin gas approximation to be valid over the entire flow field. 
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calculations results are only available for the stagnation point 

on a sphere (Ref. 5) and for flows about blunt bodies within the 

Newtonian approximation (Ref, 6).  The limitations of those 

theories are well known. 

The present analysis was undertaken having in mind the 

strict requirements for prediction of observables, definition of 

the range of possible observation, and interpretation thereof. 

However, in view of the exploratory nature of the task an approx- 

imate method of analysis has been sought, presumably retaining 

the essential features of the physical situation. 

In the oresence of viscous effects and of chemical reaction 

extending to the entire shock 'jyer careful consideration must 

be given to distributions of state properties and composition in 

the direction normal to the body surface; on the basis of this 

consideration, we have adopted an integral method formulation 

.      based on approximate description of the distribution of flow 

properties in the direction parallel to the body surface 

(Refs. 7 and 8). 

Details of the investigation are presented in the following 

sequence.-  Section II)  The Governing Partial Differential 

Equations, Boundary Conditions and the Approximations Based on 

I 



Orders of Magnitude Analysis; Section III)  The Integral 

Approximations and the Resulting Ordinary Differential Equations 

and Boundary Conditions; Section IV)  Outline of Numerical 

Procedure Including Iterative Techniques Successfully Proven in 

Connection with other Problems. 

The present analysis represents the first phase of a 

research program on reentry observables in low density continuum 

flows currently under way at GASL. 



II.  GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The equations governing the two-diirensional or axisymmetric 

flow of a viscous, chemically reacting and radiating gas, in a 

body oriented coordinate system (x,y,*) are: 

Continuity; 

t (r:,pu) +l7  lXrDpv =  0 (1) 

Momentum X: 

r    öu au     .    \        ap 
p lu ä^ + ^  d7 + kuvJ = ~ älT 

T      -T 
XX 

dTxx ä_     ,   -      v 
äx  +     äx    " +  öy     tX xy' 

XT 

xy      J    I r ax r       ay   J 

(2) 



Momentum y; 

r äv  ^ av  , »I     ap   'W 
öT   br 

+ -r** + k(T -T  ) ox     x yy xx 

(3) 

+ ^ t r  ox  X   r     ay J 

Ener^: 

P{" If ^ 17 ) + '-r ■ fc (J qJ " 57 (*V + fc (»Txx«V 

^["«»V^Vl-rftK^*^^*      (4, 

+ I (UT +VT ) rr- +  X(UT +VT  ) T~! r Ll xx  xy' ax  At xy  yy ayJ J 

Species; 

f 
p {u r-^ + XV ^l-klf ^l^l-^l 

r Lv 

aa. „      aa, 

x  ax  ox 
i  ar 

ay ay •] + OXw. (5) 

I 

i » 1,2...N-l 
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Where: 

k = body curvature 

' 0 two-dimensional flow 
. 1 axisynunetric flow 

X = 1 + ky 

* = a7imuthal angle 

XX 

=  2^  [|u  + kv|        2     fl    |u 
X     läx /        3  'xx    äx 

Sv       kv + — + — 
ay     x 

jfe 
Sr       v    Srp 

yy 
0    Sv      2    ri 2lx ä7 - I 4x 

)(6) 

au 
ax 

öv       kv 
s— + — + 
ay     x 

• |ii_    a^      v     &r\"j 
^ I Xr     Ax       r     Sy) J 

4»I> ■   j Lr     lx     ax  + V   ay|   " 3  ^  x     ax  +  Sy +  x 

u 
xr    ox 

r      v    aril 
x + 7  ä^lJ 

I 

I 

I 

xy 
av.    ^H.    ISH 

^Ix   ax + ay " x 



Fuithermore for Le = Pr = 1 and optically thin gas 

3h 
qx= - ^ ^ 

ah 

^•qr ■ X4ffM B(Ts) 

B(T ) = Zf 
8 ff 

PD = ^T M = M 

)(7) 

The system of 4+N-l equations is complemented by an equation of 

state in the form: 

h = Mp.p.or) (8) 

by a viscosity law: 

M = M(p.P.ai) (9) 

and by the condition: 

U- 
i=l 

(10) 



The corresponding unknowns in the original system are the 

two components of velocity u, v, the pressure p, the density p and 

(N-l) mass fractions. 

Two sets of boundary conditions are imposed:  one set at the 

body and one at the "outer edge" of the shock layer; we specify 

all the boundary conditions in a form appropriate for the "viscous 

layer regime," namely:  1) no slip and temperature jump phenomena 

are present at the surface of the body, and 2) the shock can be 

treated as a surface of discontinuity. 

The boundary conditions at the body are: 

vb.O 

»s, - V' 
Surface 
catalyticity: D if catalytic 

>(11) 
a. in equilibrium 

2) if not catalytic -»impermeability con- 
ditions for all 
species except 
surface material 

The boundary conditions at the shock are obtained from the 

standard Rankine-Hugoniot relations in terms of free stream prop- 

erties, of local shock inclination, and of a prescribed composition 

of the mixture on the downstream sider formally 

I 
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u = u 

v = v 

P = P, >(12) 

P = P, 

a. = a. 

The total ordf» • of the original system is [7+2(N-l)]; the 

[7+2(N-l)] boundary conditions (11) and (12) are however insuf- 

ficient since the shock geometry is also unknown.  The diffi- 

culty is removed upon examination of the continuity equation at 

the body; this provides the additional boundary conditions, 

namely 

(v )v = 0 y b 
(Ha) 

The original system of Eqs. (l)-(5) may be simplified con- 

siderably for specific application to high Mach number flows. 

Under those conditions the orders of magnitude of the basic 

properties in the shock layer are: 



~ € « 1 

V ~ €U 

u ~ U 

11 

~ Ö 

M ~ M, 

>(13) 

~ L » Ö 

-1 
k ~ L 

Accordingly the following simplified form of the equations is 

obtained when terms of order higher than (CR ) ' are neglected 

(Ref. 5): 

Continuity; 

|^ (rjpu) + ~ (xrjpv) = 0 

Momentum x; 

f  3"     au  ,  \ p iu äx + xv i7 + kuv; = dp   d  (   öul 
" ax + ay rM ay| 
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Momentum y; 

{- 
av av 
ax + xv ay kua} 

ap   4 a | av 
ay 

Energy; 

Species; 

. 2  a (ä iül + 

+ j 

au 
ä^ ix äxI T ax r ay 

!-£ ar au  v 1_ |ä E li-l "I 
lr ax ay  x ay lx r ax' J 

{-^^M7l^)-^B 

ao.    aa    a /  ^i 

>(14) 

The system (14) represents the basis of the present analysis. 

All subsequent developments aro aimed at developing a n.ethod of 

solution,  in this connection we begin by introducing new 

independent variables 

s * x 

n = y/fl 

(15) 
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with 

ö - ö(s) (16) 

the shock detachment distance; the domain of integration is thus 

transformed into a rectangle. 

Performing the transformation 

ay " 6 on 

> (17) 

dx " as " fl  ds  dn 

and recasting the equations in divergence form (desirable for 

implementation of the integral approach) we obtain: 

Continuity; 

fj^ou) - n an 
dö 
dipu/ + £r 

a     r Xpv     =   0 

Momentum x; 

ds [^(p.puMl-n^^   f|(pW)] + |r(|ixPuv) 

- kr3   (jp tan eb-puv)   = |^ (^- > 
xy 

> 
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Momentum y; 

is 
dö (rW) -„l^jl- ffipUT|+|_[r_x(M>v.)] 

- *r3[,i+j,pW] - |^ xrj + I; (r3v 

an \Ö   ds  xy 

Energy; 

äJ (rJpuH) 
r^ dö 

t^ IF dT ^uHi + 1^ 

1  SH r— T— vu T-    T— - vr-* 

fl-XPvH 

dn Ifi XM 6  dn XrJ4ff^ B 

(18) 

Species; 

Ö (rj   1  aail    j . 

Tlte boundary conditions are still expressed by (11) and (12) 

intended to apply at n«0 and at n»l respectively. 

J 
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I 
III.  THE INTEGRAL APPROACH 

Metuodology for solution of the simplified system of partial 

differential Eqs. (18) is established only for a particular formula- 

tion of the problem (the inverse problem where the shock shape is 

specified and the associated body is determined) and involves con- 

siderable labor.  The practical problem of analyzing the flow 

about a given configuration can be solved within practical limits 

of numerical effort only in approximate fashion.  A well known 

procedure to this effect is represented by the integral method in 

its various formulations (Refs. 7 and 8).  m esserce this method 

reduces the system of governing partial differential equations to 

an approximating system of ordinary differential equations by 

introducing assumed distributions of flow properties along one 

coordinate direction.  m the present report we choose to make 

assumptions about the variation of flow properties in the stream- 

wise direction since, in the presence of viscous efTects and of 

chemical reactions extending over the entire shock layer, we are 

particularly interested in assessing the effect of transport 

phenomena on cross-stream distributions of physico-chemical prop- 

erties of the gas. 

We begin implementation of the aforenoted integral approach 

by integrating Eqs. (18) between two general stations S! and s. 
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to obtain the integro-differential equations 

Continuity; 

sx 

Momentum x; 

si 

ds = 0   {19a) 

../r3 [^.p^-.r -nf^r^ ucp^.i-^rii-xpuv) ds 
(19b) 

- f"^^ tan e -puv)]d8 - |^ J [f- XT^J XT  ids 

■ 

Momentum y; 

[^wf-nf.ri^^puvia.^r^x.p^.]- 
Sx 8j * 

- f   krj[(l+j)P+Pu«>8 - |^ J9' (fi XT^jds 

r i     i98        a    r38 (ri   d^,   ] 
+ Lr' rxyJ       " " ä^ J      16       ds Txy' 

ds 

(19c) 

1 
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1 

! 

Energy; 

[rWO3'   - n I; T (#    ff ,4= ^ T (|i XPVH)- 
(19d) 

Si ' Sx 

Species: 

[^«.r-"krif1 ü-j-^rii1—^' 

on 

Sl sx 

aa. 
Ids -t- 

Sl 

(19e) 

Reduction of the (3+N) Eqs. (19) to ordinary differential form 

follows immediately upon stipulation of the s-distribution of 

certain flow quantities.  We point out that only (3+N) quantities 

can be subject of independent description; of these, two must be 

velocities, two state properties, and (N-l) species.  We assume 

polynomial laws for the following: 
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pu = Ai s  + A3 s3  + 

pua = Bas8 + B4S*  + 

Puv - Cx s  + C3 s
3  + 

puh ' Di s  + D3 sa  + 

pu0'i " ^i8 + E3is3 + *'•, 

>(20; 

where the coefficients   A, B, C, D, E are functions of n.  The 

selected quantities are all equal to zero at the axis and the 

assumed s dependencies satisfy the symmetry conditions; there- 

fore, the number of terms in each polynomial is equal to the number 

of control stations away from the axis.  Consistently with this 

procedure the properties at the axis are found from ratios of the 

laws (20) and not from the independent solution of the stagnation 

point partial differential equations (Ref. 5); for example: 

axis      axis 

Cx(n) 

Ai (n) (21) 

and BO on for all other properties.  We also notice that in the 

case of one control station and one term in the laws (20), the 

proposed procedure is equivalent to assuming flow similarity. 
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In addition to the four independent quantities (20) other 

accessory properties are cast in a polynomial form to permit a more 

convenient numerical integration of the final system; naturally the 

degree of these polynomials is determined by the constitutive rela- 

tions to be satisfied by the quantities on hand [e.g. Eqs. (6)] 

consistent with the postulated distributions (20).  Thus, we set 

3 ** PUT   = F, s  + F. s3  + + F  s 
xy   l     ' iHi 

3 "^ PUT   = Gi s  + GaS3  + ••• + G  s 
yy ma 

PUM^- Lxs  + Las*  + ••• ♦ L^s 

(22) 

Pult^r = Mii8 + Mi3sS + •*• + Mi 8 
m* 

©4 

consistent with symmetry requirements and specific definitions. 

Upon substitution of (20) into (19) and (22) one obtains t 

simultaneous nonlinear ordinary differential equations of the 

first order which can be cast in the form 

t     dp 
)     a , -r-^- = F,, (23) 

X=l 
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where 

or A - 1,2,3. ..t 

t is defined in terms of the number z of control stations 

(s = const. = Si , Sa...), the number of chemical species N and 

the magnitude of the highest powers m. appearing in (22) 

t = z(3+N) +11»! + m, + ma + (N-Dm^ (23a)       < 

P.(n) denotes the general coefficient (A.,B., etc.) in the i 

stipulated distributions (20) and (22), a . and F are known 

functions of s., n and P. to be determined case by case in accord 

with the number z of stations considered.  Of the t Eqs. (23), I 

z(3+N) follow from the conservation laws (19), while the remaining 

[mj+m?+ms+(N-l)m«] are obtained by setting to zero the coefficients 

of all powers of s in (22).  The t boundary conditions for the 

system (23) may readily be obtained in the following way:  z(3+N) 

conditions are obtained by simultaneous consideration of (11), 

(12) and (20); [mi+1118+1119 +(N-Dm* ] additional conditions are 

derived therefrom by substitution into (22) and subsequent 

setting to zero of the coefficients of all powers of s.  Recog- 

nition of additional z unknowns, namely the z coefficients in the 

law describing the shock shape, does not alter the order of the 
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system and merely requires implementation of the conditions (11a) 

at the z control stations. 

In summary, an integral method analysis of the viscous flow 

of a mixture of N reactant gases over either two-dimensional or 

axisymmetric bodies, by recognizing z regions (strips) within the 

domain of interest, involves the solution of a system of t 

ordinary differential equations of first order (23) plus z alge- 

braic equations, subject to t boundary conditions [t defined by 

(23a)].  The detailed derivation of expressions for coefficients 

and forcing functions in the system must be carried out case by 

case (depending upon the selected number z and the thermodynamic 

behavior of the mixture); however, some rules of internal con- 

sistency must be respected in that process as described below. 

To be consistent with the stipulation (20) various flaw prop- 

erties of interest must be described by the relations.- 

PV     (pua ) 
(24a) 

pva =lfiHvl! 
(Pur) (24b) 

a    = 
(PUOL) 

(PU) 
(24c) 
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(puh) (24d) 
h ~ (Pu) 

H = h + i (ua+va) = h + 1 ifiHlj.[(pu«) + (pv3)] (24e) 

p = phff:s,n) = (PfflPU? tr(s.n) (2«) 

The formal expression for the pressure p is suggested by consid- 

eration of ideal gas flows wherein ir = const; in the more general 

case one has 

if(8,n) » irCp.h.OL) (25) 

As an example of consistent derivation let us examine a compli- 

cated term such as that involving the pressure in the x-moroentum 

Eq. (19b): 

The consistent law for the shock is 

6 - öo + «is8 + 6as* + ••• (27> 

Thus 

P S*   Ro(s) + jn ^(s) (28) 
Ö   as 

i 

P 
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with 

Ro(s) 1     dö_    cos   eb 

6     ds k 

(29) 

Rj (s)   = j- cos  9^ 
as b 

The  appropriate  sequence of  transformations  of   (26)   then  proceeds 

along  the  following  lines: 

I i_ rSa li.   dö    ,,      a   rS8r I 
an  J       6       ds  p ds  = ä^" J     I Ro(s) + jn ^ (s)     x 

sl Sx J 

x   rAlD^(OaA1+A.,D1)sa
+D<,A.lS*n 

L Ba +D4 sa J T(s,n)ds 

hi^f'^lTJ'"^ ds 

+ DsA3 J=' B.!^^ s.,(s>n)ds } 

=  ÜALDJJ.   rS3   Ro(s} + in  RWs)   m.        x 

ön ^ Ba+B;!*^ 7r(s'n) ds 



24 

+   ?>(D3A1+AaD1)    rSs    R0(s)+in   Rr is) 
an Bs+B4s ■sr~^— s  n(s,n)d5= 

^Sa. /a  n.    r8'   RQ(s)+in Ri (s)      , 

(30) 

+ ^ rS8B^i^^8.ff(s,n)d8} 

+   j   J8'   R^s)   AxD1 + <DaA^A^)snDfl^s*   ^^^^ 
i Ba +B4 s 

+  JS8[Ro(s)+jn  R^s)]  AxD.^D.A^A.^)^^^^     ^  (s>n)dg 
^     i- J Bg +B4 s dn 
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All the integrals in (30) except the last one may be evaluated in 

straightforward fashion to obtain associated contributions to the 

coefficients a. . ; the last integral is reduced to the desired 
(TA 

fonr by m?ans of the additional relationship: 

r  . .    „ / x1 Ai Pi + (D3 Ai -t-Di Aa ) sa +Da A3 s* . 
P ■ JRo(s)+3n Ri(s)J -*—*—' ^ * *t-*-i  (31) 

Ba +B4 sa 

and transformation: 

P ä^ d8 = J 
Sx Si 

p88    hn r8'   / s(ou) r    (ouh) aw     ^^^ a« .  (PU) ain 

dAj 

a (ouh)    i_   diL+ a(pu0(i)    i_   aiL. 
an       pu    ah an pu    aor 

_ a (pu8)    (pu)a     M 1 d8 
an      (pu8 )8   ap J 

rS8
D r   ifiulil  il . ^y   **- + ifiHl_  ill d! J    psL    (p^F   ah     (pu)3       a       (pu5)    apJ 

+ dAau r88
D .r   jLfiuh)    air _ ^"V   air.    ißu)     air-j 

+ dn   J   ps L    (pITF   ah     (pu)8     aa. + (püT   apJ a8 

si 1 

+ ^2!.   (32) 
+ dn 

All coefficients and forcing functions in (23) may con- 

sistently be determined by algebraic transformations as detailed 

at (26) through (32) above. 
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we start by assumng a shock detachr.ent distance fio at the axis 

and compute increment thereof.  Here we do not say anything about 

Ö; it is completely free to satisfy the continuity requirement 

consistent with the assumed regular behavior. 

Consideration of viscous effects, specifically the no-slip 

condition at the wall, in the present formulation renders the 

equations singular at n=0; however, this singularity is regular 

and integration in its neighborhood may readily be performed 

along the lines detailed in Ref. 5. 

I 
I 
I 

I 

Solution of the system (23) may only be sought by numerical 

means? proper formulation thereof requires a preliminary assess- 

ment of the general features of the integral curves to be obtained. 

In this connection we observe that the integral formulation adopted 

here does not exhibit critical points of the type present in the 

standard integral method; hence the integration is straightforward. 

The absence of singularities follows from the a priori assumed 

regular behavior at the sonic velocity as manifested either by 

the prescribed pressure distribution on the body or by the pre- 

scribed shock shape (see the alternative procedures in Section IV). 

The singularity in the standard formulation represents a mathe- 

matical manifestation of the continuity requirement; in that case 



I 
I 

I 
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IV.  OUTLINE FOR NUMERICAL PROCEDIJRK 

in analogy with the inviscid blunt boüy problem two possi- 

bilities are open for the problem on hand:  the direct and the 

inverse method. 

Analysis by the direct method proceeds along the following 

lines:  a) the body geometry and the body temperature are given; 

b) (N+3) distributions of flow properties (polynomials in s) are 

estimated at n-0; these are. for example, the shock geometry 6(s). 

the pressure p. the shear stress [whereby a relation between 

(0u)n and [
i^-]n is obtained], and either the composition if the 

wall is not catalytic, or the normal derivative of the N species 

concentratxon [~-|n if the wall is catalytic; c) the remaining 

inputs for the integration are consistently obtained from the 

study of the equations in the neighborhood of the body; specifi- 

cally, one requires v^O to satisfy continuity and one determines 

Pn to satisfy the y momentum equation consistent with the pre- 
* 

scribed p(s) ; d) numerical integration of (23) is performed from 

n=0 to n-li e) compliance of the results of integration at n-1 

j      with the boundary (jump) conditions for p. p. u. v and a is 

I 

i 

I 

t 

* 
The aforenoted set of inputs is equivalent to prescribing the 
heat transfer since h =h (p .o  a ) 

n nXKn'vn' in;' 
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inspected; and f) if the latter conditions are not satisfied 

initial estimated values are modified and an iterative solution 

performed following criteria such as are discussed later in this 

section. 

Analysis by the inverse method proceeds along the following 

lines:  a) the shock geometry is given; b) (4+N) distributions 

of flow properties (e.g. ö.u ,p ,h ,a. ) are estimated and pre- 
n n n in 

scribed at the outer edge of the shock layer (n=l) and initial 

values for integration established accordingly; c) integration 

is carried out from n«l to n=0; d) compliance with (4+N) condi- 

tions on the body (namely u=v=v =0, h=h. and either Ot.   or a. 

consistent with surface catalyticity) is inspected; and e) itera- 

tion is pursued if not all conditions are satisfied at n«0. 

It must be concluded that either method exhibits comparable 

numerical difficulties for the problem on hand; indeed a large 

number of quantities [either (3+N) or (4+N)] must be estimated 

and iterated upon for either direct or inverse approach. 

The required iterations may be carried out ^n organized 

fashion by assuming linearization of differences between solutions 

characterized by change in one input parameter only-  To be 

specific, a first run is performed corresponding to an initial set 

i 
I 
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of (3+N) estimated quantities; subsequently (3+N) additional runs 

are performed each characterized by a set of initial conditions 

differing from the first one for a single quantity.  In the 

hypothesis that the error can be linearized a system cf linear 

algebraic equations in the unknown AQ. Cj=l,2,•••(3+N)] correc- 

tions to be imposed on the estimated initial conditions may be 

constructed; specifically one equates the errors observed in the 

first run to a weighted linear combination of the errors intro- 

duced by each perturbation to obtain 

3±N  dP. 

'i- I  w: *°i <33' 
j-i    3 

where P. indicates the known initial error property for the i property 

and  the partial derivatives are obtained by differences between 

the results of each "perturbation" run and the initial one. 

Obviously the procedure can be repeated until satisfactory con- 

vergence is achieved. 

A second alternative to the numerical iteration may be 

sought by extension to the problem on hand of Weil's method for 

solving a class of ordinary differential equations usually 

encountered in boundary layer problems.  The essence of that 
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method is the approximate solution of the equations by iteration, 

satisfying exactly at each iteration the known boundary condi- 

tions.  Although the characteristics of convergence can not be 

predicted, an approach along this line is here suggested in view 

of its simplicity, its adaptability to automatic operation and its 

capability to provide results to any degree of accuracy.  The 

salient procedural points are clearly illustrated by inspection 

of the following model solution of a syctero of two non-linear 

ordinary differential equations of the first order; extension to 

the higher order system (25) is immediate.  Consider the equations 

a" £r + ai3 d^r"Fl 

dfi dfa 
a«» ST + a8a dx 

(34) 

with ali.   ax,.   a8l .   a,, .   Fi ,   Fa   = known  functions of  f x .   f 8 .   x, 

subject to the boundary conditions 

at x = 0 fx   -  fio 
(35) 

at x =  1 fa   =■•  fax 
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Solve the aystem (34) for the highest order derivatives (in this 

case first order): 

df! Pi    -  f^ Fa Baa 
dx aii+a81   f12- 

a8a 

dfa 

dx     ' 

1  r^       < 
at a   u                   c 

(36) 

I 

I 
! 

At the general n  iteration the properties (fx) and (fa) 

are known (in the initial stage estimated profiles satisfying the 

known boundary conditions are used as inputs.  Write Eq. (36) in 

the form: 

dfi] 
s 

Wt   - f"- F, 
Wmm 

^   In 
u
a"+a^   ttl n-1 

«. — 
ax,    |Fi-a" 

\ _ 

p» - j"- F. 
aaa 

<*  'n a« a aii+aal   ■?*- aaa n-1 

(37) 
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Upon  integration 

Cfx(x)]n  =  fio   +  % 

F:    - f^ F8  aaa 

ai l +331 
aaa- 

dx 

n-1 

(38) 

Cfa(x)]n -   (fao)n +   i 
1 

aia 

Fx 
Fi-an 

^ia 

 aaa 
Fa 

ai x +aa i 
aia   : 
aaa 'n-l_ 

dx 

The boundary conditions at x=l define 

(fao) n tax -J 1 
ax a 

Fx -ax i 
F1   - f^ Fa 

«xx+aax 
aaa 'n-1— 

dx (39) 

and,   therefore,   Eqs.   (38)   can be used to generate the new pro- 

files.     The procedure  is with  a  limit on The 
(f»o)n 

procedure is amenable to further refinements:  in particular 

when the solution oscillates an over-relaxed iteration or extrap- 

olation can be used to expedite convergence. 
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V.   CONCLUSIONS 

A method has been presented for the study of the continuum 

viscous shock layer about re-entry bodies as it is encountered 

at altitudes approximately between 300 and 200 kft for vehicles 

having typical dimensions of the order of feet.  An integral 

approach has been used which permits detailed description of 

distributions of flow properties along normals to the body 

surface and, thereby, should lead to reasonable predictions of 

observables.  The present report has been concerned with the 

initial phase of the investigation, namely the development of the 

method of analysis.  Applications will require extensive numerical 

work; guide lines therefor have been discussed. 
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